Creatine kinase ( CK), also known as creatine phosphokinase ( CPK) or phosphocreatine kinase, is an enzyme () expressed by various tissues and cell types. CK catalyses the conversion of creatine and uses adenosine triphosphate (ATP) to create phosphocreatine (PCr) and adenosine diphosphate (ADP). This CK enzyme reaction is reversible and thus ATP can be generated from PCr and ADP.
In tissues and cells that consume ATP rapidly, especially skeletal muscle, but also brain, photoreceptor cells of the retina, of the inner ear, spermatozoa and smooth muscle, PCr serves as an energy reservoir for the rapid buffering and regeneration of ATP in situ, as well as for intracellular energy transport by the PCr shuttle or circuit. Thus creatine kinase is an important enzyme in such tissues.
Clinically, creatine kinase is assayed in blood tests as a marker of damage of CK-rich tissue such as in myocardial infarction (heart attack), rhabdomyolysis (severe muscle breakdown), muscular dystrophy, autoimmune Myositis, and acute kidney injury.
While mitochondrial creatine kinase is directly involved in the formation of phosphocreatine from mitochondrial ATP, cytosolic CK regenerates ATP from ADP, using PCr. This happens at intracellular sites where ATP is used in the cell, with CK acting as an in situ ATP regenerator.
CKB | creatine kinase, brain, BB-CK |
CKBE | creatine kinase, ectopic expression |
CKM | creatine kinase, muscle, MM-CK |
CKMT1A, CKMT1B | creatine kinase mitochondrial 1; ubiquitous mtCK; or umtCK |
CKMT2 | creatine kinase mitochondrial 2; sarcomeric mtCK; or smtCK |
Isoenzyme patterns differ in tissues. Skeletal muscle expresses CK-MM (98%) and low levels of CK-MB (1%). The myocardium (heart muscle), in contrast, expresses CK-MM at 70% and CK-MB at 25–30%. CK-BB is predominantly expressed in brain and smooth muscle, including vascular and uterine tissue.
Mitochondrial mtCK and cytosolic CK are connected in a so-called PCr/Cr-shuttle or circuit. PCr generated by mtCK in mitochondria is shuttled to cytosolic CK that is coupled to ATP-dependent processes, e.g. ATPases, such as acto-myosin ATPase and calcium ATPase involved in muscle contraction, and sodium/potassium ATPase involved in sodium retention in the kidney. The bound cytosolic CK accepts the PCr shuttled through the cell and uses ADP to regenerate ATP, which can then be used as an energy source by the ATPases (CK is associated intimately with the ATPases, forming a functionally coupled microcompartment). PCr is not only an energy buffer, but also a cellular transport form of energy between subcellular sites of energy (ATP) production (mitochondria and glycolysis) and those of energy utilization (ATPases).
Thus, CK enhances skeletal, cardiac, and smooth muscle contractility, and is involved in the generation of blood pressure. Further, the ADP-scavenging action of creatine kinase has been implicated in bleeding disorders: persons with highly elevated plasma CK could be prone to major bleeding.
Creatine kinase in the blood may be high in health and disease. Exercise increases the outflow of creatine kinase to the blood stream for up to a week, and this is the most common cause of high CK in blood. Furthermore, high CK in the blood may be related to high intracellular CK such as in persons of African descent.
Finally, high CK in the blood may be an indication of damage to CK-rich tissue, such as in rhabdomyolysis, myocardial infarction, myositis and myocarditis. This means creatine kinase in blood may be elevated in a wide range of clinical conditions including the use of medication such as statins; endocrine disorders such as hypothyroidism; and skeletal muscle diseases and disorders including malignant hyperthermia, and neuroleptic malignant syndrome.
Furthermore, the CPK-MB test has in the past been used extensively as an indication for myocardial damage in heart attacks. Troponin measurement has largely replaced this in many hospitals, although some centers still rely on CK-MB.
Laboratory testing
Nomenclature
See also
External links
|
|